φ
(p-1)
gcd
Euler's Totient Function: φ(n) = (p-1)(q-1) | RSA Private Key Derivation
φ(n) = (p-1)(q-1)
φ(n)
Totient Function
Counts coprimes ≤ n
p, q
Distinct Primes
RSA key factors
(p-1)(q-1)
Multiplicative Property
For coprime factors
(p - 1)
32,316
First prime - 1
×
(q - 1)
40,008
Second prime - 1
=
φ(n)
1,292,854,328
KEEP SECRET
MATHEMATICAL FOUNDATION
Definition: φ(n) = |{k ∈ ℕ : 1 ≤ k ≤ n, gcd(k,n) = 1}|
For prime p: φ(p) = p-1 For coprime m,n: φ(mn) = φ(m)φ(n)
RSA Usage: Enables private key calculation
Time: O(1) if factors known, O(√n) general case
Knowledge of φ(n) ≡ factorization of n
MULTIPLICATIVE PROPERTY
Given: n = pq, where p,q are distinct primes
gcd(p,q) = 1 (coprimality of distinct primes)
φ(pq) = φ(p)·φ(q) by multiplicative property
φ(p) = p-1, φ(q) = q-1 for primes
∴ φ(n) = (p-1)(q-1) ∎
RSA Key Gen: d ≡ e⁻¹ (mod φ(n))
PRIME CASE
For prime p, all integers 1 to p-1 are coprime to p
φ(p) = p-1 gcd(k,p) = 1 ∀k ∈ {1,2,...,p-1}
φ(7) = 6
φ(13) = 12
SEMI-PRIME
For n=pq, count non-coprimes and subtract from total
Non-coprimes: multiples of p or q Count = (q-1) + (p-1) = p+q-2 φ(pq) = pq - (p+q-2) + 1 = (p-1)(q-1)
RSA ALGORITHM
Private key derivation steps:
1. Choose p,q prime 2. n = pq, φ(n) = (p-1)(q-1) 3. Pick e: gcd(e,φ(n)) = 1 4. Find d: ed ≡ 1 (mod φ(n)) 5. Public: (n,e), Private: (n,d)
Interactive • Hover elements • Auto-cycling examples