PQC Document

Introduction

This documentation provides step-by-step instructions for generating SSL
certificates, Self signed certificate , and Digital signature using Dilithium-based
cryptographic algorithms with OpenSSL. Dilithium is a post-quantum secure digital

signature algorithm, designed to protect against attacks from quantum computers.

System Configurations used
Operating System : Windows 10 Pro

Processor : Intel(R) Core(TM) i7-9700 CPU @ 3.00GHz

RAM :32GB
Virtual Machine Configurations used

VM Application : VMware Workstation 17 Player

Operating System : Ubuntu 22.04

Processor : 2 Cores
RAM 4GB
Hard Disk :20 GB

Prerequisites

Before proceeding with the certificate generation process, ensure you have the
following prerequisites:

1. OpenSSL : Make sure you have OpenSSL (openssl version >= 3.0.0) installed on
your system.

sudo apt install openssl

S sudo apt install openssl

[sudo] password for a:
Reading package lists... Done
Building dependency tree... Done

Reading state information... Done

openssl is already the newest version (3.0.2-8ubuntul.10).

® upgraded, ® newly installed, @ to remove and 236 not upgraded.
: $

-

sudo apt install libssl-dev

3 S sudo apt install libssl-dew
Reading package lists... Done

Building dependency tree... Done

Reading state information... Done

libssl-dev is already the newest version (3.0.2-0ubuntul.10).

® upgraded, @ newly installed, ©® to remove and 236 not upgraded.

N |

e

2. Open-quantum-safe / Ogs-provider : Ensure that your OpenSSL installation
includes support for quantum safe algorithms.

2.1 Install dependencies:

sudo apt install astyle cmake gcc ninja-build libssl-dev python3-pytest
python3-pytest-xdist unzip xsltproc doxygen graphviz python3-yaml
valgrind

1§ sudo apt install astyle cmake gcc ninja-build libssl-dev python3-pytest python3-pytest-xdist unzip xsltproc doxygen graphviz python3-yaml valgrind
[sudo] password for a:
Reading package lists... Done
Building dependency tree... Done
Reading state infermation... Done
gcc is already the newest version (4:11.2.6-lubuntul).
python3-yaml is already the newest version (5.4.1-1lubuntu1).
valgrind is already the newest version (1:3.18.1-1ubuntu2).
astyle is already the newest version (3.1-2buildl).
doxygen is already the newest version (1.9.1-2ubuntu2).
graphviz is already the newest version (2.42.2-6).
ninja-build is already the newest version (1.10.1-1).
python3-pytest is already the newest version (6.2.5-1ubuntu2).
python3-pytest-xdist is already the newest version (2.5.0-1).
cmake is already the newest version (3.22.1-lubuntul.22.04.1).
[libssl-dev is already the newest version (3.6.2-6ubuntul.1@).
unzip is already the newest version (6.0-26ubuntu3.1).
xsltproc is already the newest version (1.1.34-4ubuntu@.22.04.1).
@ upgraded, © newly installed, @ to remove and 234 not upgraded.
~S

2.2 Get the source (liboqs) :

apt install git

git clone -b main https://github.com/open-quantum-safe/libogs.git

cd libogs

:~$ git clone -b main https://github.com/open-quantum-safe/libogs.git
Cloning into 'libogs'...
remote: Enumerating objects: 38455, done.
remote: Counting objects: 180% (1587/1587), done.
remote: Compressing objects: 100% (828/828), done.
remote: Total 30455 (delta 940), reused 1178 (delta 742), pack-reused 28868

Receiving objects: (30455/30455), 137.83 MiB | 14.63 MiB/s, done.
Resolving deltas: 1 (21806/21806), done.

https://github.com/open-quantum-safe/liboqs.git

2.3 Build :

mkdir build && cd build

S cd libogs/f
S sudo mkdir build && cd build

S

cmake -GNinja ..

B $ sudo cmake -GNinja ..

The C compiler identification is GNU 11.3.0

The ASM compiler identification is GNU

Found assembler: fusr/bin/cc

Detecting C compiler ABI info

Detecting C compiler ABI info - done

Check for working € compiler: Jusr/binfcc - skipped

Detecting C compile features

Detecting C compile features - done

Performing Test CC_SUPPORTS_ WA NOEXECSTACK

Performing Test CC_SUPPORTS_WA_NOEXECSTACK - Success

Performing Test LD SUPPORTS WL Z NOEXECSTACK

Performing Test LD_SUPPORTS_WL_Z_NOEXECSTACK - Success

Looking for pthread.h

Looking for pthread.h - found

Performing Test CMAKE_HAVE_LIBC_PTHREAD

Performing Test CMAKE_HAVE_LIBC_PTHREAD - Success

Found Threads: TRUE

Alg enablement unchanged

Found OpensSSL: fusr/lib/x86_64-1inux-gnu/libcrypto.so (found suitable version "3.8.2", minimum required is "1.1.1")

Looking for aligned_alloc

Looking for aligned_alloc - found

Looking for posix_memalign

Looking for posix_memalign - found

Looking for memalign

Looking for memalign - found

Looking for explicit_bzero

Looking for explicit_bzero - found

Looking for memset_s

Looking for memset_s - not found

Found Doxygen: [usr/bin/doxygen (found version "1.9.1") found components: doxygen dot

Configuring done

Generating done

Build files have been written to: /home/a/libogs/build
H $

ninja

B $ sude ninja
[1226/1226] Linking C executable tests/dump alg info

: S

-

2.4 Install package:
ninja install

H S sudo ninja install
[@/1] Install the project...
-- Install configuration: ""
Installing: /fusr/local/lib/cmake/1iboqs/libogsConfig.cmake
Installing: fusr/local/lib/cmake/1ibogs/1libogsConfigVersion.cmake
Installing: /fusr/local/lib/pkgconfig/libogs.pc
Installing: /fusr/local/lib/libogs.a
Installing: /usr/local/lib/cmake/1iboqs/libogsTargets.cmake
Installing: /usr/local/lib/cmake/1ibogs/libogsTargets-noconfig.cmake
Installing: /fusr/local/include/oqs/ogs.h
Installing: /fusr/local/include/foqs/common.h
Installing: fusr/local/includefoqs/rand.h
Installing: fusr/local/include/oqs/faes.h
Installing: /fusr/local/includefoqs/shaz2.h
Installing: fusr/local/includefoqs/sha3.h
Installing: fusr/local/includefoqs/sha3x4.h
Installing: fusr/local/include/oqs/kem.h
Installing: /fusr/local/include/oqs/sig.h
Installing: /usr/local/include/oqs/kem_bike.h
Installing: fusr/local/include/oqs/kem_frodokem.h
Installing: /usr/local/include/oqs/kem_ntruprime.h
Installing: /usr/local/include/oqs/kem_classic_mceliece.h
Installing: /usr/local/include/ogs/kem_hgc.h
Installing: fusr/local/include/oqs/kem_kyber.h
Installing: /fusr/local/include/oqs/sig _dilithium.h
Installing: /fusr/local/include/foqs/sig_falcon.h
Installing: Jfusr/local/includefoqs/sig_sphincs.h
Installing: fusr/local/include/oqsfogqsconfig.h
: 5

. -

2.5 Install Prerequisites for ogs-provider:
These prerequisites include git, cmake, and a C compiler.
cd

apt install cmake build-essential

;-6 sudo apt install cmake build-essential git

[sudo] password for a:

Reading package lists... Done

Bullding dependency tree... Done

Reading state information... Done

The follewing additional packages will be installed:
binutils binutils-common binutils-x86-64-1inux-gnu cmake-data cpp-11 dh-elpa-helper dpkg-dev fakeroot g++ g++-11 gcc gcc-11 gec-1i-base git-man Libalgorithm-diff-perl libalgorithm-diff-xs-perl
libalgorithm-merge-perl libasané libbinutils libc-dev-bin libc-devtools libc6-dev libcel-0 Liberypt-dev libctf-nobfde libctfé libdpkg-perl liberror-perl Libfakeroot libfile-fcntllock-perl
1libgcc-11-dev libitmi libjsoncpp25 liblsan® libnsl-dev libquadmath® librhash® libstdc++-11-dev libtirpc-dev libtsan® libubsani limux-libc-dev lto-disabled-list make manpages-dev rpcsvc-proto

Suggested packages:
binutils-doc cmake-doc ninja-build cmake-format gcc-11-locales debian-keyring g++-multilib g++-11-multilib gec-11-doc gec-multilib autoconf automake Libtool flex bison gcc-doc gec-11-multilib

git-daemon-run | git-daemor vinit git-doc git-emall git-gul gitk gitweb git-cvs git-mediawiki git-svn glibc-doc bzr libstdc++-11-doc make-doc

The following NEW packages will be installed:
binutils binutils-common binutils-x86-64-1inux-gnu build-essential cmake cmake-data dh-elpa-helper dpkg-dev fakeroot g++ g++-11 gcc gec-11 git git-man libalgorithm-diff-perl libalgorithm-diff-xs-perl
Llibalgorithm-merge-perl libasané libbinutils libc-dev-bin libc-devtools libc6-dev libce1-8 Liberypt-dev libetf-nobfde libctfe Libdpkg-perl liberror-perl Libfakeroot libfile-fentllock-perl
libgcc-11-dev libitmi 1ibjsoncpp25 1iblsan¢ libnsl-dev 1ibquadmath® librhashe libstdc++-11-dev libtirpc-dev 1ibtsan0 libubsani linux-libc-dev lto-disabled-1list make manpages-dev rpcsvc-proto

The following packages will be upgraded:
cpp-11 gcc-1i-base

2 upgraded, 47 newly installed, © to remove and 234 not upgraded.
Need to get 75.4 MB of archives.

After this operation, 239 MB of additional disk space will be used.
Do you want to continue? [Y/n] y

2.6 Clone oqgs-provider library :

git clone https://github.com/open-quantum-safe/ogs-provider.git

cd ogs-provider
2.7 Build and Install:

To build and install ogs-provider, use the standard CMake build sequence.
You can specify the location of OpenSSL and liboqs libraries if they are not
installed in the system standard locations.

a. If openssl and liboqs are installed in the system standard locations:

cmake -S . -B _build && cmake --build build && cmake --install _build

f S sudo su

root@a-virtual-machine: /home/a/Downloads/oqs-provider-main# cmake -S . -B _build && cmake --build _build && cmake --install _build

- Creating Release build

- Build will store public keys in PKCS#B8 structures

- Build will not include external encoding library for SPKI/PKCS#8

- libogs found: Include dir at /usr/local/include;/usr/local/include/oqgs
fatal: not a git repository (or any of the parent directories): .git
-- Building commit 1in /home/a/Downloads/oqs-provider-main

- Configuring done

- Generating done

- Build files have been written to: /home/a/Downloads/eoqs-provider-main/_build

[39%] Built target ogsprovider

[50%] Built target oqs_test_signatures

[60%] Built target ogs_test_kems

[75%] Built target ogs_test_groups
[89%] Built target ogs_test_tlssig

[100%] Built target ogs_test_endecode

- Install configuration: ""

- Installing: /usr/lib/x86_64-1linux-gnu/ossl-modules/ogsprovider.so
root@a-virtual-machine: /home/a/Downloads/oqs-provider-main#

b. If openssl and/or libogs have been installed to custom locations, use the
OPENSSL_ROOT_DIR and libogs_DIR CMake defines or environment
variables:

libogs_DIR=../libogs cmake -DOPENSSL_ROOT_DIR=/opt/openssl3 -S . -B
_build && cmake --build build && cmake --install build

Replace /opt/openssl3 with the actual path to the OpenSSL installation if it
is not in the system standard location.

https://github.com/open-quantum-safe/oqs-provider.git

2.8 Test the Build:

Standard ctest can be used to validate correct operation in build directory
_build

cd _build && ctest --parallel 2 --rerun-failed --output-on-failure -V

root@a-virtual-machine:/home/a/Downloads/oqs-provider-main# cd _build && ctest --parallel 2 --rerun-failed --output-on-failure -v
UpdateCTestConfiguration from :/home/a/Downloads/oqs-provider-main/_build/DartConfiguration.tcl
UpdateCTestConfiguration from :/home/a/Downloads/oqs-provider-main/_build/DartConfiguration.tcl
Test project [home/a/Downloads/oqs-provider-main/_build
Constructing a list of tests
Done constructing a list of tests
Updating test list for fixtures
Added © tests to meet fixture requirements
Checking test dependency graph...
Checking test dependency graph end
test 1
Start 1: ogs_signatures

: Test command: /home/a/Downloads/oqs-provider-main/_build/test/oqs_test_signatures "ogsprovider" "/home/a/Downloads/ogs-provider-main/test/oqs.cnf"
: Environment variables:
OPENSSL_MODULES=/home fa/Downloads foqs-provider-main/_build/lib
: Test timeout computed to be: 10000000
est 2
Start 2: oqs_kems

2: Test command: /home/a/Downloads/ogs-provider-main/_build/test/oqs_test kems "ogsprovider" "/home/a/Downloads/ogs-provider-main/test/ogs.cnf"
2: Environment variables:

2: OPENSSL_MODULES=/home/a/Downloads/ogqs-provider-main/_build/1ib

2: Test timeout computed to be: 16000000

i
2
i
2
2
2
2
2
2
2
r
2:
.
2
2
2
2
2
2
2
2
2
2

2.9 Activation:
Step1:
a. Use -provider option:

Most OpenSSL commands accept the -provider option followed by the
name of the provider to be activated. For ogs-provider, you can use it like
this:

openssl list -signature-algorithms -provider ogsprovider

:-$ openssl list -signature-algorithms -provider ogsprovider
dilithiumz @ ogsprovider
p256_dilithium2 @ ogsprovider
rsa3e72_dilithium2 @ ogsprovider
dilithium3 @ ogsprovider
p384 dilithium3 @ ogsprovider
dilithium5 @ ogsprovider
p521 dilithium5 @ ogsprovider
falcon512 @ oqsprovider
p256_falcon512 @ ogsprovider
rsa3e72_falcon512 @ oqsprovider
falconl024 @ oqsprovider
p521 falconl®24 @ ogsprovider
sphincssha2128fsimple @ oqsprovider
p256_sphincsshaz128fsimple @ ogsprovider
rsa3e72_sphincsshazi128fsimple @ oqsprovider
sphincssha2128ssimple @ oqsprovider
p256_sphincsshaz128ssimple @ ogqsprovider
rsa3e72_sphincsshazi128ssimple @ oqsprovider
sphincsshaz2192fsimple @ oqsprovider
p384 sphincsshaz192fsimple @ ogsprovider
sphincsshake128fsimple @ ogsprovider
p256_sphincsshake128fsimple @ oqsprovider
rsa3072_sphincsshake128fsimple @ ogsprovider
-5

==

The above command will list all quantum-safe signature algorithms made
available for OpenSSL use by the ogs-provider

b. Use -provider-path option (if provider is not installed in the system
location):

If the ogs-provider binary is not installed in the system location
(lib/ossl-modules in the main OpenSSL installation tree), you can specify
the location using the -provider-path option. For example:

openssl list -signature-algorithms -provider-path
/path/to/ogsprovider_binary

Replace /path/to/oqsprovider_binary with the actual path to the
ogs-provider binary.

Step 2:

a. Edit the openssl.cnf file:

Locate the OpenSSL configuration file (openssl.cnf). The location of this file
may vary depending on your system and OpenSSL installation. Common
locations include /etc/ssl/openssl.cnf and /usr/lib/ssl/openssl.cnf.

(Or you can run : opensssl version -d)

b. Add activation instructions:

Open the openssl.cnf file in a text editor with administrative privileges.
Add the following lines to the file:

1. Add the following lines below [provider_sect] keep the
existing lines :

legacy = legacy_sect
ogsprovider = ogsprovider_sect

2. Add the following lines below [default_sect] keep the existing
lines :

activate =1

3. Add the following lines if the header exists merge the the
following with the existing body part :

[legacy_sect]

activate =1

[ogsprovider_sect]
activate =1

[openssl_init]

10

ssl_conf = ssl_sect
[ss]_sect]

system_default = system_default_sect

[system_default_sect]

CipherString = DEFAULT:@SECLEVEL=2

Groups = kyber768:kyber1024

Save and close the openssl.cnf file.

Sample openssl.cnf :

1

#

OpenSSL example configuration file.

See doc/man5/config.pod for more info.

#

This is mostly being used for generation of certificate requests,

but may be used for auto loading of providers

Note that you can include other files from the main configuration
file using the .include directive.

#.include filename

This definition stops the following lines choking if HOME isn't

defined.

HOME =.

Use this in order to automatically load providers.

openssl_conf = openssl_init

Comment out the next line to ignore configuration errors

config_diagnostics = 1

Extra OBJECT IDENTIFIER info:

oid_file = $ENV::HOME/.oid

oid_section = new_oids

To use this configuration file with the "-extfile" option of the
"openssl x509" utility, name here the section containing the

X.509v3 extensions to use:

extensions
(Alternatively, use a configuration file that has only

X.509v3 extensions in its main [= default] section.)

[new _oids]

We can add new OIDs in here for use by 'ca’, 'req' and 'ts'.
Add a simple OID like this:

testoid1=1.2.3.4

Or use config file substitution like this:

testoid2=${testoid1}.5.6

Policies used by the TSA examples.
tsa_policyl =1.2.3.4.1
tsa_policy2 = 1.2.3.4.5.6

tsa_policy3 =1.2.3.4.5.7

For FIPS

Optionally include a file that is generated by the OpenSSL fipsinstall

application. This file contains configuration data required by the
OpenSSL

fips provider. It contains a named section e.g. [fips_sect] which is
referenced from the [provider_sect] below.
Refer to the OpenSSL security policy for more information.

.include fipsmodule.cnf

[openssL_init]
providers = provider_sect

ssl_conf = ssl_sect

List of providers to load
[provider_sect]
default = default_sect

legacy = legacy_sect

[default_sect]

activate =1

[legacy_sect]

activate = 1

The fips section name should match the section name inside the

included fipsmodule.cnf.

14

fips = fips_sect

If no providers are activated explicitly, the default one is activated
implicitly.

See man 7 OSSL_PROVIDER-default for more details.

#

If you add a section explicitly activating any other provider(s), you most
probably need to explicitly activate the default provider, otherwise it

becomes unavailable in openssl. As a consequence applications
depending on

OpenSSL may not work correctly which could lead to significant system
problems including inability to remotely access the system.
[default_sect]

activate = 1

HHHHHHHAAAH AR AR AR R R R R H R R AR AR AR R R R R R
#Hit##

[cal

default ca = CA_default # The default ca section

HHHHHHHAHAH AR AR AR R R R AR A AR R R R R
#Hit##

[CA_default]

15

dir = ./demoCA # Where everything is kept

certs = $dir/certs # Where the issued certs are kept

crl dir = $dir/crl # Where the issued crl are kept
database = $dir/index.txt # database index file.

#unique_subject =1no # Set to 'no' to allow creation of

several certs with same subject.

new_certs_dir = $dir/newcerts # default place for new
certs.

certificate = $dir/cacert.pem # The CA certificate

serial = $dir/serial # The current serial number

crlnumber = $dir/crlnumber # the current crl number

must be commented out to leave a V1
CRL

crl = $dir/crl.pem # The current CRL

private_key = $dir/private/cakey.pem# The private key

x509_extensions =usr_cert # The extensions to add to the cert

Comment out the following two lines for the "traditional”
(and highly broken) format.
name_opt = ca_default # Subject Name options

cert_opt = ca_default # Certificate field options

16

Extension copying option: use with caution.

copy_extensions = copy

Extensions to add to a CRL. Note: Netscape communicator chokes on V2
CRLs

so this is commented out by default to leave a V1 CRL.

crlnumber must also be commented out to leave a V1 CRL.

crl_extensions = crl_ext

default_days =365 # how long to certify for
default_crl_days= 30 # how long before next CRL
default_md = default # use public key default MD
preserve =1no # keep passed DN ordering

A few difference way of specifying how similar the request should look
For type CA, the listed attributes must be the same, and the optional
and supplied fields are just that :-)

policy = policy_match

For the CA policy

[policy_match]

countryName = match
stateOrProvinceName = match

organizationName = match

1

organizationalUnitName = optional
commonName = supplied

emailAddress = optional

For the 'anything' policy
At this point in time, you must list all acceptable 'object’
types.

[policy_anything]

countryName = optional
stateOrProvinceName = optional
localityName = optional

organizationName = optional
organizationalUnitName = optional
commonName = supplied

emailAddress = optional

HHHHHH R AR AR
HHH#

[req]
default_bits =2048
default_keyfile = privkey.pem

distinguished_name = req_distinguished_name
attributes = req_attributes

X509_extensions =v3_ca # The extensions to add to the self signed

18

cert

Passwords for private keys if not present they will be prompted for
input_password = secret

output_password = secret

This sets a mask for permitted string types. There are several options.
default: PrintableString, T61String, BMPString.

pkix : PrintableString, BMPString (PKIX recommendation before 2004)
utf8only: only UTF8Strings (PKIX recommendation after 2004).

nombstr : PrintableString, T61String (no BMPStrings or UTF8Strings).

MASK:XXXX a literal mask value.

WARNING: ancient versions of Netscape crash on BMPStrings or
UTF8Strings.

string_mask = utf8only

req_extensions = v3_req # The extensions to add to a certificate request

[req_distinguished_name]

countryName = Country Name (2 letter code)
countryName_default =AU
countryName_min =2

countryName_max =2

19

stateOrProvinceName = State or Province Name (full name)

stateOrProvinceName_default = Some-State

localityName = Locality Name (eg, city)

0.organizationName = Organization Name (eg, company)

0.organizationName_default = Internet Widgits Pty Ltd

we can do this but it is not needed normally :-)

#1.organizationName = Second Organization Name (eg,
company)

#1.organizationName_default = World Wide Web Pty Ltd
organizationalUnitName = Organizational Unit Name (eg, section)

#organizationalUnitName_default =

commonName = Common Name (e.g. server FQDN or
YOUR name)

commonName_max =64

emailAddress = Email Address

emailAddress_max =64

SET-ex3 = SET extension number 3

20

[req_attributes]

challengePassword = A challenge password
challengePassword_min =4
challengePassword_max =20
unstructuredName = An optional company name
[usr_cert]

These extensions are added when 'ca’ signs a request.

This goes against PKIX guidelines but some CAs do it and some software

requires this to avoid interpreting an end user certificate as a CA.

basicConstraints=CA:FALSE

This is typical in keyUsage for a client certificate.

keyUsage = nonRepudiation, digitalSignature, keyEncipherment

PKIX recommendations harmless if included in all certificates.
subjectKeyldentifier=hash

authorityKeyldentifier=keyid,issuer

21

This stuff is for subjectAltName and issuerAltname.
Import the email address.

subjectAltName=email:copy

An alternative to produce certificates that aren't

deprecated according to PKIX.

subjectAltName=email:move

Copy subject details

issuerAltName=issuer:copy

This is required for TSA certificates.

extendedKeyUsage = critical,timeStamping

[v3_req]

Extensions to add to a certificate request

basicConstraints = CA:FALSE

keyUsage = nonRepudiation, digitalSignature, keyEncipherment

[v3 ca]

Extensions for a typical CA

22

PKIX recommendation.

subjectKeyldentifier=hash

authorityKeyldentifier=keyid:always,issuer

basicConstraints = critical,CA:true

Key usage: this is typical for a CA certificate. However since it will
prevent it being used as an test self-signed certificate it is best
left out by default.

keyUsage = cRLSign, keyCertSign

Include email address in subject alt name: another PKIX recommendation
subjectAltName=email:copy
Copy issuer details

issuerAltName=issuer:copy

DER hex encoding of an extension: beware experts only!
obj=DER:02:03
Where 'obj' is a standard or added object

You can even override a supported extension:

23

basicConstraints= critical, DER:30:03:01:01:FF

[crl ext]

CRL extensions.

Only issuerAltName and authorityKeyldentifier make any sense in a CRL.

issuerAltName=issuer:copy

authorityKeyldentifier=keyid:always

[proxy_cert_ext]

These extensions should be added when creating a proxy certificate

This goes against PKIX guidelines but some CAs do it and some software

requires this to avoid interpreting an end user certificate as a CA.

basicConstraints=CA:FALSE

This is typical in keyUsage for a client certificate.

keyUsage = nonRepudiation, digitalSignature, keyEncipherment

PKIX recommendations harmless if included in all certificates.
subjectKeyldentifier=hash

authorityKeyldentifier=keyid,issuer

24

This stuff is for subjectAltName and issuerAltname.
Import the email address.

subjectAltName=email:copy

An alternative to produce certificates that aren't

deprecated according to PKIX.

subjectAltName=email:move

Copy subject details

issuerAltName=issuer:copy

This really needs to be in place for it to be a proxy certificate.

proxyCertInfo=critical,language:id-ppl-anyLanguage,pathlen:3,policy:foo

HHHHHH R AR AR
HHH#

[tsa]

default_tsa = tsa_configl # the default TSA section

[tsa_configl]

These are used by the TSA reply generation only.

dir =./demoCA # TSA root directory

25

serial = $dir/tsaserial # The current serial number
(mandatory)

crypto_device = builtin # OpenSSL engine to use for
signing

signer_cert = $dir/tsacert.pem # The TSA signing certificate
(optional)

certs = $dir/cacert.pem # Certificate chain to include in reply
(optional)

signer_key = $dir/private/tsakey.pem # The TSA private key (optional)

signer_digest =sha256 # Signing digest to use. (Optional)
default_policy = tsa_policy1 # Policy if request did not specify
it

(optional)

other_policies = tsa_policy2, tsa_policy3 # acceptable policies
(optional)

digests =shal, sha256, sha384, sha512 # Acceptable message digests
(mandatory)

accuracy = secs:1, millisecs:500, microsecs:100 # (optional)
clock_precision_digits =0 # number of digits after dot. (optional)
ordering =yes #Is ordering defined for timestamps?
(optional, default: no)
tsa_name =yes # Must the TSA name be included in the reply?
(optional, default: no)
ess_cert_id_chain =no # Must the ESS cert id chain be included?

(optional, default: no)

26

ess_cert_id_alg =shal # algorithm to compute certificate

identifier (optional, default: shal)

[insta] # CMP using Insta Demo CA

Message transfer

server = pki.certificate.fi:8700

proxy = # set this as far as needed, e.g., http://192.168.1.1:8080
#tls_use=0

path = pkix/

Server authentication

recipient = "/C=FI/O=Insta Demo/CN=Insta Demo CA" # or set srvcert or
issuer

ignore_keyusage = 1 # potentially needed quirk
unprotected_errors = 1 # potentially needed quirk

extracertsout = insta.extracerts.pem

Client authentication
ref = 3078 # user identification

secret = pass:insta # can be used for both client and server side

Generic message options

cmd = ir # default operation, can be overridden on cmd line with, e.g., kur

2]

Certificate enrollment

subject = "/CN=openssl-cmp-test"”
newkey = insta.priv.pem
out_trusted = insta.ca.crt

certout = insta.cert.pem

[pbm] # Password-based protection for Insta CA
Server and client authentication
ref = $insta::ref # 3078

secret = $insta::secret # pass:insta

[signature] # Signature-based protection for Insta CA
Server authentication

trusted = insta.ca.crt # does not include keyUsage digitalSignature

Client authentication
secret = # disable PBM
key = $insta::newkey # insta.priv.pem
cert = $insta::certout # insta.cert.pem

[ir]

cmd =ir
[cr]
cmd =cr

[kur]
Certificate update
cmd = kur

oldcert = $insta::certout # insta.cert.pem

[rr]

Certificate revocation

cmd =T

oldcert = $insta::certout # insta.cert.pem
[ss]_sect]

system_default = system_default_sect
[system_default_sect]

CipherString = DEFAULT:@SECLEVEL=2
Groups = kyber768:kyber1024
[provider_sect]

default = default_sect

ogsprovider = ogsprovider_sect
[ogsprovider_sect]

activate =1

Available quantum-safe/PQ KEM algorithms :
https://github.com/open-quantum-safe/ogs-provider/blob/main/README.md#kem-algori

thms

28

https://github.com/open-quantum-safe/oqs-provider/blob/main/README.md#kem-algorithms
https://github.com/open-quantum-safe/oqs-provider/blob/main/README.md#kem-algorithms
https://github.com/open-quantum-safe/oqs-provider/blob/main/README.md#kem-algorithms

1.Generating Dilithium-based SSL Certificates

Generating the Root Certificate (Certificate Authority)

Step 1: Generate the private key for the Certificate Authority (CA):

openssl genpkey -algorithm <dilithium3> -out key_CA.key

sudo openssl genpkey -algorithm dilithium3 -out key CA.key

Step 2: Create the self-signed Root Certificate (CA Certificate):

openssl req -x509 -new -newkey <dilithium3> -key key_CA.key -out
Certificate_CA.crt -nodes -subj "/CN=My CA" -days 365 -config /usr/lib/ssl/openssl.cnf

H $ openssl req -x509 -new -newkey dilithium3 -key key CA.key -out Certificate CA.crt -nodes -days 365 -config /usr/lib/ssl/openssl.cnf
You are about to be asked to enter infermation that will be incorporated

into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:IN
State or Province Name (full name) [Some-State]:KA
Locality Name (eg, city) []:BLR
Organization Name (eg, company) [Internet Widgits Pty Ltd]:CDAC
Organizational Unit Name (eg, section) []:RISE
Common Name (e.g. server FQDN or YOUR name) []:*.cdac.in
Email Address []:cdac@cdac.in I
H S

Generating the Server Certificate

Step 1: Generate the private key for the server certificate:
openssl genpkey -algorithm <dilithium3> -out private.key

openssl genpkey -algorithm dilithium3 -out private.key

29

Step 2: Create a certificate signing request (CSR) for the server certificate:

openssl req -new -newkey <dilithium3> -key private.key -out Certificate.csr -nodes
-subj "/CN=test server" -config /usr/lib/ssl/openssl.cnf -extensions v3_req

: $ openssl req -new -newkey dilithium3 -key private.key -out Certificate.csr -nodes -config /usr/lib/ssl/openssl.cnf -extensions v3_req
You are about to be askcd to enter information that will be incorporated

into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.

There are quite a few Fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:IN
State or Province Name (full name) [Some-State]:KA
Locality Name (eg, city) []:BLR

organization Name (eg, company) [Internet Widgits Pty Ltd]:CDAC
organizational Unit Name (eg, section) []:RIS:

Common Name (e.g. server FQDN or YOUR name) []:*.in

Email Address []:cdac@cdac.in

Please enter the following 'extra' attributes
to be sent with your certificate request

A challenge password []:Test@l23
An optional company name []:cdac

$

Signing the Server Certificate

Step 1: Sign the server certificate using the previously generated root certificate and key:

openssl X509 -req -in Certificate.csr -out Certificate.crt -CA Certificate_CA.crt
-CAkey key_CA.key -CAcreateserial -days 365 -extfile /usr/lib/ssl/openssl.cnf
-extensions v3_req

S openssl x509 -req -in Certificate.csr -out Certificate.crt -CA Certificate CA.crt -CAkey key_CA.key -CAcreateserial -days 365 -extfile jusr/lib/sslfopenssl.cnf -extens
ions v3_req
Certificate reque t self- 1gnature ok

subject=C = IN, ST = KA 0 = CDAC, OU = RISE, CN = *.in, emallAddress = cdac@cdac.in
: sl

30

Verifying the Server Certificate

To verify the server certificate's details, run the following command:

openssl X509 -text -noout -in Certificate.crt

5 openssl x509 -text -noout -in Certificate.crt

Version: 3 (0x2)
Serial Number:
6a:06:5e:d9:7b:f3:c2:60:d5:40:ee:82:cd:2d:f6:dc:7e:95:41:59
Signature Algorithm: dilithium3
Issuer: € = IN, ST = KA, L = BLR, 0 = CDAC, OU = RISE, CN = *.cdac.in, emailAddress = cdac@cdac.in
Validity
Not Before: Jul 25 11:51:58 2023 GMT
Not After : Jul 24 11 :58 2024 GMT
Subject: € = IN, ST = KA, L = BLR, O = CDAC, OU = RISE, CN = *.in, emailAddress = cdac@cdac.in
Subject Public Key Info:
Public kKey Algorithm: dilithium3
dilithium3 public key:
PQ key material:
d6:9b:b1:5d:
7C:19:36:30:cB:03:
i58:d7:7a:09:92:
:56:7e:44:27:ab:
:6b:
:cO:bl:
H-1 M

31

2.Digital Signing

Create private key :

To create a private key, we will be using the following command :

openssl genpkey -algorithm <dilithium3> -out private.key

S openssl genpkey -algorithm dilithium3 -out private.key
$

Extract the Public Key from the Private key :

Once the private key is generated, we need to extract the public key for further
use :

openssl pkey -in private.key -pubout -out public.key

$ openssl pkey -in private.key -pubout -out public.key
S

Signing Data with the Private Key :
To sign data using the quantum-safe private key, execute the following command:

openssl dgst -sign private.key -out dgstsignfile data.txt

$ openssl dgst -sign private.key -out dgstsignfile data.txt
$

32

Verifying the Digital Signature :
To verify the file, run the following command:

openssl dgst -signature dgstsignfile -verify public.key data.txt

$ openssl dgst -signature dgstsignfile -verify public.key data.txt
Verified OK

sl

33

34

3. Generating Self Signed Certificates

3.1 Using CSR(Certificate Signing Request)

Creating a Private Key:

Generate the private key using the command

openssl genpkey -algorithm <dilithium5> -out key.key

openssl genpkey -algorithm dilithium5 -out key.key

Creating a Certificate Signing Request:

openssl req -key key.key -new -out domain.csr -extensions v3_req

B $ openssl req -key key.key -new -out domain.csr -extensions v3_req
You are about to be asked to enter information that will be incorporated

into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:IN

State or Province Name (full name) [Some-State]:KA

Locality Mame (eg, city) []:BLR

Organization Name (eg, company) [Internet Widgits Pty Ltd]:C-DAC
Organizational Unit Name (eg, section) []:Rise

Common Name (e.g. server FQDN or YOUR name) []:

Email Address []:

Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:

s

Signing Using CSR And Key:
Use the following command to sign the certificate :

openssl x509 -signkey key.key -in domain.csr -req -days 365 -out self-cert.crt
-extfile /usr/lib/ssl/openssl.conf -extensions v3_req

g S openssl x509 -signkey key.key -in domain.csr -req -days 365 -out self-cert.crt -extfile Jusr/lib/ssl/openssl.cnf -extensions v3_reg
Certificate request self-signature ok
subject=C = IN, ST = KA, L = BLR, 0 = C-DAC, OU = Rise

s

Verifying the Certificate
To verify the certificate's details, run the following command:

openssl X509 -text -noout -in self-cert.crt

S openssl x509 -text -noout -in self-cert.crt

rsion: 3 (@x2)
Serial Number:
5b:05:d5:c0:34:41:0e:b0:f5:72:14:27:86:95:91:86:e5:11
Signature Algorithm: dilithium5
Issuer: C = IN, ST = KA, L = BLR, 0 = C-DAC, OU = Rise
Validity
Not Before: Jul 25 17:19:24 2023 GMT
Not After : Jul 24 17:19:24 2024 CMT
Subject: C = IN, KA, L = BLR, 0 = C-DAC, OU = Rise
Subject Public Key Info:
Public Key Algorithm: dilithiums
dilithium5 public key:
PQ key material:
3 :fe:b9:13:23:
:86:b9:f7:41:

36

3.2 Using Private Key

Creating a Private Key:
Generate Private Key using the command :

openssl genpkey -algorithm <dilithium5> -out private.key

openssl genpkey -algorithm dilithium5 -out private.key

Signing Using Private Key:
Use the following command to sign the certificate :

openssl req -key private.key -new -x509 -days 365 -out self-certv3.crt
-extensions usr_cert

3 $ openssl req -key private.key -new -x589 -days 365 -out self-certv3.crt -extensions usr_cert
You are about to be asked to enter information that will be incorporated

into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:IN

State or Province Name (full name) [Some-State]:Karnataka
Locality Name (eg, city) []:Bangalore

Organization Name (eg, company) [Internet Widgits Pty Ltd]:C-DAC
Organizational Unit Name (eg, section) []:RISE

Common Name (e.g. server FQDN or YOUR name) []:Test

Email Address []:test@cdac.in

) |

Verifying the Certificate

To verify the certificate's details, run the following command:

openssl X509 -text -noout -in self-cert.crt

S openssl x509 -text -noout -in self-certv3.crt
Certificate:
Data:
Version: 3 (0x2)
Serial Numbe
4b:dc:c5:76:a5:b7:d1:46:4c:22:db:b5:f0:80:91:e9:b0:25:e3:af
Signature Algorithm: dilithium5
Issu C=1IN, S Karnataka, L = Bangalore, 0 = C-DAC, OU = RISE, Test, emailAddress = test@cdac.in
validity
Not Before: Jul 27 ©8:51:34 2023 GMT
Not After : Jul 26 ©8:51:34 2024 GMT
Subject: € = IN, ST = Karnataka, L = Bangalore, 0 = C-DAC, OU = RISE, CN = Test, emailAddress = test@cdac.in
Subject Public y Info:
Public Key Algorithm: dilithium5
dilithium5 public key:
PQ key material:
94: 72:31:d8:49:be:
H:T-H
:76:5c:b3:70:
:5f:fa:9b:b1:
:d5:41:c9:0b:
:87:34:4b:eb
ice:23:32:2e
i74:07:47:
d4:560:c1:
:05:c2:0e
:27:f5:cb:e

4. Generating Hybrid Certificates

Generating the Root Certificate (Certificate Authority)

Step 1: Generate a private key for the Certificate Authority (CA) with 2048-bit key

length :

openssl genrsa -out CA-pvt.key 2048

$ openssl genrsa -out CA-pvt.key 2048

Step 2: Once the private key is generated, we need to extract the public key for

further use

openssl rsa -in CA-pvt.key -pubout -out CA-pub.pem

writing RSA key

$ openssl rsa -in CA-pvt.key -pubout -out CA-pub.pem

Y |

Step 3: Create the self-signed Root Certificate (CA Certificate):

openssl req -new -x509 -key CA-pvt.key -days 3650 -out CA.crt

$ openssl req -new -x509 -key CA-pvt.key -days 3650 -out CA

You are about to be asked to enter information that will be incorporated

into your certificate
What you are about to
There are quite a few
For some fields there

If you enter '.', the

request.

enter is what is called a Distinguished Name or a DN.
fields but you can leave some blank

will be a default value,

field will be left blank.

Country Name (2 letter code) [AU]:IN

State or Province Name (full name) [Some-State]:KARNATAKA
Locality Name (eg, city) []:BANGALORE

Organization Name (eg, company) [Internet Widgits Pty Ltd]:CDAC
Organizational Unit Mame (eg, section) []:RISE

Common Name (e.g. server FQDN or YOUR name) []:*.cdac.in

Email Address []:cdac@cdac.in

38

Generating the Server Certificate

Step 1: Generate the private key for the server certificate:

openssl genpkey -algorithm <dilithium5> -out private.key

$ openssl genpkey -algorithm dilithium5 -out private.key

Step 2: Create a certificate signing request (CSR) for the server certificate:

openssl req -new -newkey <dilithium5> -key private.key -out Certificate.csr
-config /usr/lib/ssl/openssl.cnf -extensions v3_req

H openssl req -new -newkey dilithium5 -key private.key -out Certificate.csr -config /usr/lib/ssl/openssl.cnf -extensions v3_req
You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:IN
State or Province Name (full name) [Some-State]:KERALA
Locality Name (eg, city) []:KASARGOD

Organization Name (eg, company) [Internet Widgits Pty Ltd]:KL60 pvt Lltd
Organizational Unit Name (eg, section) []:KL60

Common Name (e.g. server FQDN or YOUR name) []:*.k166.com

Email Address []:kl60@gmail.com

Please enter the followlng 'extra' attributes
to be sent with your certificate request

A challenge password []:Password@i234

An optional company name []:kl14

39

Signing the Server Certificate

Step 1: Sign the server certificate using the root certificate and key:

openssl X509 -req -in Certificate.csr -CA CA.crt -CAkey CA-pvt.key -CAcreateserial
-out Userca.crt -days 365 -sha256 -extensions v3_req -extfile /usr/lib/ssl/openssl.cnf

$ openssl x509 -req -in Certificate.csr -CA CA.crt -CAkey CA-pvt.key -CAcreateserial -out Userca.crt -days 365 -sha256 -extensions v3_req -extfile fusr/li

b/ssl/openssl.cnf

Certificate request self-signature ok

subject=C = IN, ST = KERALA, L = KASARGOD, O = Kuii pvt ltd, OU = KL6@, CN = *.Kl60.com, emailAddress = kl60ggmail.com
: $

40

REFERENGES

41

[1] OpenSSL Foundation, Inc. (no date) OpenSSL,
/docs/man3.0/man7/crypto.html. Available at:
https://www.openssl.org/docs/man3.0/man7/crypto.html (Accessed: 17 July
2023).

[2] “Home,” Open Quantum Safe, https://openquantumsafe.org/ (accessed
Jul. 27, 2023).

[3] Open-Quantum-Safe, “GitHub - open-quantum-safe/oqs-provider:
OpenSSL 3 provider containing post-quantum algorithms,” GitHub.
https://github.com/open-quantum-safe/ogs-provider (Accessed: 19 July
2023).

[4] Open-Quantum-Safe, “GitHub - open-quantum-safe/liboqs: C library for
prototyping and experimenting with quantum-resistant cryptography,”
GitHub. https://github.com/open-quantum-safe/libogs (Accessed: 19 July
2023).

[5] “Creating a Self-Signed Certificate with OpenSSL | Baeldung,” Baeldung,
Oct. 2022, [Online]. Available:
https://www.baeldung.com/openssl-self-signed-cert (Accessed: 20 July
2023).

[6] C. M. Jun, “Creating public key from private key | Baeldung on Linux,”
Baeldung on Linux, Aug. 2022, [Online]. Available:
https://www.baeldung.com/linux/public-key-from-private-key#:~:text=Getti
ng%20the%20Public%20Key%20using%200penssl (Accessed: 26 July 2023).

https://www.openssl.org/docs/man3.0/man7/crypto.html
https://openquantumsafe.org/
https://github.com/open-quantum-safe/oqs-provider
https://github.com/open-quantum-safe/liboqs
https://www.baeldung.com/openssl-self-signed-cert
https://www.baeldung.com/linux/public-key-from-private-key#:~:text=Getting%20the%20Public%20Key%20using%20openssl
https://www.baeldung.com/linux/public-key-from-private-key#:~:text=Getting%20the%20Public%20Key%20using%20openssl

