
 PQC Document
 Introduction

 This documentation provides step-by-step instructions for generating SSL

 certificates, Self signed certificate , and Digital signature using Dilithium-based

 cryptographic algorithms with OpenSSL. Dilithium is a post-quantum secure digital

 signature algorithm, designed to protect against attacks from quantum computers.

 System Configurations used

 Operating System : Windows 10 Pro

 Processor : Intel(R) Core(TM) i7-9700 CPU @ 3.00GHz

 RAM : 32 GB

 Virtual Machine Configurations used

 VM Application : VMware Workstation 17 Player

 Operating System : Ubuntu 22.04

 Processor : 2 Cores

 RAM : 4 GB

 Hard Disk : 20 GB

 1

 Prerequisites

 Before proceeding with the certificate generation process, ensure you have the

 following prerequisites:

 1. OpenSSL : Make sure you have OpenSSL (openssl version >= 3.0.0) installed on

 your system.

 sudo apt install openssl

 sudo apt install libssl-dev

 2

 2. Open-quantum-safe / Oqs-provider : Ensure that your OpenSSL installation

 includes support for quantum safe algorithms.

 2.1 Install dependencies:

 sudo apt install astyle cmake gcc ninja-build libssl-dev python3-pytest

 python3-pytest-xdist unzip xsltproc doxygen graphviz python3-yaml

 valgrind

 2.2 Get the source (liboqs) :

 apt install git

 git clone -b main https://github.com/open-quantum-safe/liboqs.git

 cd liboqs

 3

https://github.com/open-quantum-safe/liboqs.git

 2.3 Build :

 mkdir build && cd build

 cmake -GNinja ..

 ninja

 4

 2.4 Install package:

 ninja install

 2.5 Install Prerequisites for oqs-provider:

 These prerequisites include git, cmake, and a C compiler.

 cd

 apt install cmake build-essential

 5

 2.6 Clone oqs-provider library :

 git clone https://github.com/open-quantum-safe/oqs-provider.git

 cd oqs-provider

 2.7 Build and Install:

 To build and install oqs-provider, use the standard CMake build sequence.

 You can specify the location of OpenSSL and liboqs libraries if they are not

 installed in the system standard locations.

 a. If openssl and liboqs are installed in the system standard locations:

 cmake -S . -B _build && cmake --build _build && cmake --install _build

 b. If openssl and/or liboqs have been installed to custom locations, use the

 OPENSSL_ROOT_DIR and liboqs_DIR CMake defines or environment

 variables:

 liboqs_DIR=../liboqs cmake -DOPENSSL_ROOT_DIR=/opt/openssl3 -S . -B

 _build && cmake --build _build && cmake --install _build

 Replace /opt/openssl3 with the actual path to the OpenSSL installation if it

 is not in the system standard location.

 6

https://github.com/open-quantum-safe/oqs-provider.git

 2.8 Test the Build:

 Standard ctest can be used to validate correct operation in build directory

 _build

 cd _build && ctest --parallel 2 --rerun-failed --output-on-failure -V

 2.9 Activation:

 Step 1 :

 a. Use -provider option:

 Most OpenSSL commands accept the -provider option followed by the

 name of the provider to be activated. For oqs-provider, you can use it like

 this:

 7

 openssl list -signature-algorithms -provider oqsprovider

 The above command will list all quantum-safe signature algorithms made

 available for OpenSSL use by the oqs-provider

 b. Use -provider-path option (if provider is not installed in the system

 location):

 If the oqs-provider binary is not installed in the system location

 (lib/ossl-modules in the main OpenSSL installation tree), you can specify

 the location using the -provider-path option. For example:

 openssl list -signature-algorithms -provider-path

 /path/to/oqsprovider_binary

 Replace /path/to/oqsprovider_binary with the actual path to the

 oqs-provider binary.

 8

 Step 2:

 a. Edit the openssl.cnf file:

 Locate the OpenSSL configuration file (openssl.cnf). The location of this file

 may vary depending on your system and OpenSSL installation. Common

 locations include /etc/ssl/openssl.cnf and /usr/lib/ssl/openssl.cnf.

 (Or you can run : opensssl version -d)

 b. Add activation instructions:

 Open the openssl.cnf file in a text editor with administrative privileges.

 Add the following lines to the file:

 1. Add the following lines below [provider_sect] keep the

 existing lines :

 legacy = legacy_sect

 oqsprovider = oqsprovider_sect

 2. Add the following lines below [default_sect] keep the existing

 lines :

 activate = 1

 3. Add the following lines if the header exists merge the the

 following with the existing body part :

 [legacy_sect]

 activate = 1

 [oqsprovider_sect]

 activate = 1

 [openssl_init]

 9

 ssl_conf = ssl_sect

 [ssl_sect]

 system_default = system_default_sect

 [system_default_sect]

 CipherString = DEFAULT:@SECLEVEL=2

 Groups = kyber768:kyber1024

 Save and close the openssl.cnf file.

 10

 Sample openssl.cnf :

 #

 # OpenSSL example configuration file.

 # See doc/man5/config.pod for more info.

 #

 # This is mostly being used for generation of certificate requests,

 # but may be used for auto loading of providers

 # Note that you can include other files from the main configuration

 # file using the .include directive.

 #.include filename

 # This definition stops the following lines choking if HOME isn't

 # defined.

 HOME = .

 # Use this in order to automatically load providers.

 openssl_conf = openssl_init

 # Comment out the next line to ignore configuration errors

 config_diagnostics = 1

 # Extra OBJECT IDENTIFIER info:

 11

 # oid_file = $ENV::HOME/.oid

 oid_section = new_oids

 # To use this configuration file with the "-extfile" option of the

 # "openssl x509" utility, name here the section containing the

 # X.509v3 extensions to use:

 # extensions =

 # (Alternatively, use a configuration file that has only

 # X.509v3 extensions in its main [= default] section.)

 [new_oids]

 # We can add new OIDs in here for use by 'ca', 'req' and 'ts'.

 # Add a simple OID like this:

 # testoid1=1.2.3.4

 # Or use config file substitution like this:

 # testoid2=${testoid1}.5.6

 # Policies used by the TSA examples.

 tsa_policy1 = 1.2.3.4.1

 tsa_policy2 = 1.2.3.4.5.6

 tsa_policy3 = 1.2.3.4.5.7

 # For FIPS

 # Optionally include a file that is generated by the OpenSSL fipsinstall

 12

 # application. This file contains configuration data required by the

 OpenSSL

 # fips provider. It contains a named section e.g. [fips_sect] which is

 # referenced from the [provider_sect] below.

 # Refer to the OpenSSL security policy for more information.

 # .include fipsmodule.cnf

 [openssl_init]

 providers = provider_sect

 ssl_conf = ssl_sect

 # List of providers to load

 [provider_sect]

 default = default_sect

 legacy = legacy_sect

 [default_sect]

 activate = 1

 [legacy_sect]

 activate = 1

 # The fips section name should match the section name inside the

 # included fipsmodule.cnf.

 13

 # fips = fips_sect

 # If no providers are activated explicitly, the default one is activated

 implicitly.

 # See man 7 OSSL_PROVIDER-default for more details.

 #

 # If you add a section explicitly activating any other provider(s), you most

 # probably need to explicitly activate the default provider, otherwise it

 # becomes unavailable in openssl. As a consequence applications

 depending on

 # OpenSSL may not work correctly which could lead to significant system

 # problems including inability to remotely access the system.

 [default_sect]

 # activate = 1

 ##

 ####

 [ca]

 default_ca = CA_default # The default ca section

 ##

 ####

 [CA_default]

 14

 dir = ./demoCA # Where everything is kept

 certs = $dir/certs # Where the issued certs are kept

 crl_dir = $dir/crl # Where the issued crl are kept

 database = $dir/index.txt # database index file.

 #unique_subject = no # Set to 'no' to allow creation of

 # several certs with same subject.

 new_certs_dir = $dir/newcerts # default place for new

 certs.

 certificate = $dir/cacert.pem # The CA certificate

 serial = $dir/serial # The current serial number

 crlnumber = $dir/crlnumber # the current crl number

 # must be commented out to leave a V1

 CRL

 crl = $dir/crl.pem # The current CRL

 private_key = $dir/private/cakey.pem# The private key

 x509_extensions = usr_cert # The extensions to add to the cert

 # Comment out the following two lines for the "traditional"

 # (and highly broken) format.

 name_opt = ca_default # Subject Name options

 cert_opt = ca_default # Certificate field options

 15

 # Extension copying option: use with caution.

 # copy_extensions = copy

 # Extensions to add to a CRL. Note: Netscape communicator chokes on V2

 CRLs

 # so this is commented out by default to leave a V1 CRL.

 # crlnumber must also be commented out to leave a V1 CRL.

 # crl_extensions = crl_ext

 default_days = 365 # how long to certify for

 default_crl_days= 30 # how long before next CRL

 default_md = default # use public key default MD

 preserve = no # keep passed DN ordering

 # A few difference way of specifying how similar the request should look

 # For type CA, the listed attributes must be the same, and the optional

 # and supplied fields are just that :-)

 policy = policy_match

 # For the CA policy

 [policy_match]

 countryName = match

 stateOrProvinceName = match

 organizationName = match

 16

 organizationalUnitName = optional

 commonName = supplied

 emailAddress = optional

 # For the 'anything' policy

 # At this point in time, you must list all acceptable 'object'

 # types.

 [policy_anything]

 countryName = optional

 stateOrProvinceName = optional

 localityName = optional

 organizationName = optional

 organizationalUnitName = optional

 commonName = supplied

 emailAddress = optional

 ##

 ####

 [req]

 default_bits = 2048

 default_keyfile = privkey.pem

 distinguished_name = req_distinguished_name

 attributes = req_attributes

 x509_extensions = v3_ca # The extensions to add to the self signed

 17

 cert

 # Passwords for private keys if not present they will be prompted for

 # input_password = secret

 # output_password = secret

 # This sets a mask for permitted string types. There are several options.

 # default: PrintableString, T61String, BMPString.

 # pkix : PrintableString, BMPString (PKIX recommendation before 2004)

 # utf8only: only UTF8Strings (PKIX recommendation after 2004).

 # nombstr : PrintableString, T61String (no BMPStrings or UTF8Strings).

 # MASK:XXXX a literal mask value.

 # WARNING: ancient versions of Netscape crash on BMPStrings or

 UTF8Strings.

 string_mask = utf8only

 # req_extensions = v3_req # The extensions to add to a certificate request

 [req_distinguished_name]

 countryName = Country Name (2 letter code)

 countryName_default = AU

 countryName_min = 2

 countryName_max = 2

 18

 stateOrProvinceName = State or Province Name (full name)

 stateOrProvinceName_default = Some-State

 localityName = Locality Name (eg, city)

 0.organizationName = Organization Name (eg, company)

 0.organizationName_default = Internet Widgits Pty Ltd

 # we can do this but it is not needed normally :-)

 #1.organizationName = Second Organization Name (eg,

 company)

 #1.organizationName_default = World Wide Web Pty Ltd

 organizationalUnitName = Organizational Unit Name (eg, section)

 #organizationalUnitName_default =

 commonName = Common Name (e.g. server FQDN or

 YOUR name)

 commonName_max = 64

 emailAddress = Email Address

 emailAddress_max = 64

 # SET-ex3 = SET extension number 3

 19

 [req_attributes]

 challengePassword = A challenge password

 challengePassword_min = 4

 challengePassword_max = 20

 unstructuredName = An optional company name

 [usr_cert]

 # These extensions are added when 'ca' signs a request.

 # This goes against PKIX guidelines but some CAs do it and some software

 # requires this to avoid interpreting an end user certificate as a CA.

 basicConstraints=CA:FALSE

 # This is typical in keyUsage for a client certificate.

 # keyUsage = nonRepudiation, digitalSignature, keyEncipherment

 # PKIX recommendations harmless if included in all certificates.

 subjectKeyIdentifier=hash

 authorityKeyIdentifier=keyid,issuer

 20

 # This stuff is for subjectAltName and issuerAltname.

 # Import the email address.

 # subjectAltName=email:copy

 # An alternative to produce certificates that aren't

 # deprecated according to PKIX.

 # subjectAltName=email:move

 # Copy subject details

 # issuerAltName=issuer:copy

 # This is required for TSA certificates.

 # extendedKeyUsage = critical,timeStamping

 [v3_req]

 # Extensions to add to a certificate request

 basicConstraints = CA:FALSE

 keyUsage = nonRepudiation, digitalSignature, keyEncipherment

 [v3_ca]

 # Extensions for a typical CA

 21

 # PKIX recommendation.

 subjectKeyIdentifier=hash

 authorityKeyIdentifier=keyid:always,issuer

 basicConstraints = critical,CA:true

 # Key usage: this is typical for a CA certificate. However since it will

 # prevent it being used as an test self-signed certificate it is best

 # left out by default.

 # keyUsage = cRLSign, keyCertSign

 # Include email address in subject alt name: another PKIX recommendation

 # subjectAltName=email:copy

 # Copy issuer details

 # issuerAltName=issuer:copy

 # DER hex encoding of an extension: beware experts only!

 # obj=DER:02:03

 # Where 'obj' is a standard or added object

 # You can even override a supported extension:

 22

 # basicConstraints= critical, DER:30:03:01:01:FF

 [crl_ext]

 # CRL extensions.

 # Only issuerAltName and authorityKeyIdentifier make any sense in a CRL.

 # issuerAltName=issuer:copy

 authorityKeyIdentifier=keyid:always

 [proxy_cert_ext]

 # These extensions should be added when creating a proxy certificate

 # This goes against PKIX guidelines but some CAs do it and some software

 # requires this to avoid interpreting an end user certificate as a CA.

 basicConstraints=CA:FALSE

 # This is typical in keyUsage for a client certificate.

 # keyUsage = nonRepudiation, digitalSignature, keyEncipherment

 # PKIX recommendations harmless if included in all certificates.

 subjectKeyIdentifier=hash

 authorityKeyIdentifier=keyid,issuer

 23

 # This stuff is for subjectAltName and issuerAltname.

 # Import the email address.

 # subjectAltName=email:copy

 # An alternative to produce certificates that aren't

 # deprecated according to PKIX.

 # subjectAltName=email:move

 # Copy subject details

 # issuerAltName=issuer:copy

 # This really needs to be in place for it to be a proxy certificate.

 proxyCertInfo=critical,language:id-ppl-anyLanguage,pathlen:3,policy:foo

 ##

 ####

 [tsa]

 default_tsa = tsa_config1 # the default TSA section

 [tsa_config1]

 # These are used by the TSA reply generation only.

 dir = ./demoCA # TSA root directory

 24

 serial = $dir/tsaserial # The current serial number

 (mandatory)

 crypto_device = builtin # OpenSSL engine to use for

 signing

 signer_cert = $dir/tsacert.pem # The TSA signing certificate

 # (optional)

 certs = $dir/cacert.pem # Certificate chain to include in reply

 # (optional)

 signer_key = $dir/private/tsakey.pem # The TSA private key (optional)

 signer_digest = sha256 # Signing digest to use. (Optional)

 default_policy = tsa_policy1 # Policy if request did not specify

 it

 # (optional)

 other_policies = tsa_policy2, tsa_policy3 # acceptable policies

 (optional)

 digests = sha1, sha256, sha384, sha512 # Acceptable message digests

 (mandatory)

 accuracy = secs:1, millisecs:500, microsecs:100 # (optional)

 clock_precision_digits = 0 # number of digits after dot. (optional)

 ordering = yes # Is ordering defined for timestamps?

 # (optional, default: no)

 tsa_name = yes # Must the TSA name be included in the reply?

 # (optional, default: no)

 ess_cert_id_chain = no # Must the ESS cert id chain be included?

 # (optional, default: no)

 25

 ess_cert_id_alg = sha1 # algorithm to compute certificate

 # identifier (optional, default: sha1)

 [insta] # CMP using Insta Demo CA

 # Message transfer

 server = pki.certificate.fi:8700

 # proxy = # set this as far as needed, e.g., http://192.168.1.1:8080

 # tls_use = 0

 path = pkix/

 # Server authentication

 recipient = "/C=FI/O=Insta Demo/CN=Insta Demo CA" # or set srvcert or

 issuer

 ignore_keyusage = 1 # potentially needed quirk

 unprotected_errors = 1 # potentially needed quirk

 extracertsout = insta.extracerts.pem

 # Client authentication

 ref = 3078 # user identification

 secret = pass:insta # can be used for both client and server side

 # Generic message options

 cmd = ir # default operation, can be overridden on cmd line with, e.g., kur

 26

 # Certificate enrollment

 subject = "/CN=openssl-cmp-test"

 newkey = insta.priv.pem

 out_trusted = insta.ca.crt

 certout = insta.cert.pem

 [pbm] # Password-based protection for Insta CA

 # Server and client authentication

 ref = $insta::ref # 3078

 secret = $insta::secret # pass:insta

 [signature] # Signature-based protection for Insta CA

 # Server authentication

 trusted = insta.ca.crt # does not include keyUsage digitalSignature

 # Client authentication

 secret = # disable PBM

 key = $insta::newkey # insta.priv.pem

 cert = $insta::certout # insta.cert.pem

 [ir]

 cmd = ir

 [cr]

 cmd = cr

 27

 [kur]

 # Certificate update

 cmd = kur

 oldcert = $insta::certout # insta.cert.pem

 [rr]

 # Certificate revocation

 cmd = rr

 oldcert = $insta::certout # insta.cert.pem

 [ssl_sect]

 system_default = system_default_sect

 [system_default_sect]

 CipherString = DEFAULT:@SECLEVEL=2

 Groups = kyber768:kyber1024

 [provider_sect]

 default = default_sect

 oqsprovider = oqsprovider_sect

 [oqsprovider_sect]

 activate = 1

 ==

 A vailable quantum-safe/PQ KEM algorithm s :
 https://github.com/open-quantum-safe/oqs-provider/blob/main/README.md#kem-algori
 thms

 28

https://github.com/open-quantum-safe/oqs-provider/blob/main/README.md#kem-algorithms
https://github.com/open-quantum-safe/oqs-provider/blob/main/README.md#kem-algorithms
https://github.com/open-quantum-safe/oqs-provider/blob/main/README.md#kem-algorithms

 1. Generating Dilithium-based SSL Certificates

 Generating the Root Certificate (Certificate Authority)

 Step 1: Generate the private key for the Certificate Authority (CA):

 openssl genpkey -algorithm <dilithium3> -out key_CA.key

 Step 2: Create the self-signed Root Certificate (CA Certificate):

 openssl req -x509 -new -newkey <dilithium3> -key key_CA.key -out

 Certificate_CA.crt -nodes -subj "/CN=My CA" -days 365 -config /usr/lib/ssl/openssl.cnf

 Generating the Server Certificate

 Step 1: Generate the private key for the server certificate:

 openssl genpkey -algorithm <dilithium3> -out private.key

 29

 Step 2: Create a certificate signing request (CSR) for the server certificate:

 openssl req -new -newkey <dilithium3> -key private.key -out Certificate.csr -nodes

 -subj "/CN=test server" -config /usr/lib/ssl/openssl.cnf -extensions v3_req

 Signing the Server Certificate

 Step 1: Sign the server certificate using the previously generated root certificate and key:

 openssl x509 -req -in Certificate.csr -out Certificate.crt -CA Certificate_CA.crt

 -CAkey key_CA.key -CAcreateserial -days 365 -extfile /usr/lib/ssl/openssl.cnf

 -extensions v3_req

 30

 Verifying the Server Certificate

 To verify the server certificate's details, run the following command:

 openssl x509 -text -noout -in Certificate.crt

 31

 2. Digital Signing
 Create private key :

 To create a private key, we will be using the following command :

 openssl genpkey -algorithm <dilithium3> -out private.key

 Extract the Public Key from the Private key :

 Once the private key is generated, we need to extract the public key for further

 use :

 openssl pkey -in private.key -pubout -out public.key

 Signing Data with the Private Key :

 To sign data using the quantum-safe private key, execute the following command:

 openssl dgst -sign private.key -out dgstsignfile data.txt

 32

 Verifying the Digital Signature :

 To verify the file, run the following command:

 openssl dgst -signature dgstsignfile -verify public.key data.txt

 33

 3. Generating Self Signed Certificates
 3.1 Using CSR(Certificate Signing Request)
 Creating a Private Key:

 Generate the private key using the command

 openssl genpkey -algorithm <dilithium5> -out key.key

 Creating a Certificate Signing Request:

 openssl req -key key.key -new -out domain.csr -extensions v3_req

 Signing Using CSR And Key:

 Use the following command to sign the certificate :

 openssl x509 -signkey key.key -in domain.csr -req -days 365 -out self-cert.crt

 -extfile /usr/lib/ssl/openssl.conf -extensions v3_req

 34

 Verifying the Certificate

 To verify the certificate's details, run the following command:

 openssl x509 -text -noout -in self-cert.crt

 35

 3.2 Using Private Key

 Creating a Private Key:

 Generate Private Key using the command :

 openssl genpkey -algorithm <dilithium5> -out private.key

 Signing Using Private Key:

 Use the following command to sign the certificate :

 openssl req -key private.key -new -x509 -days 365 -out self-certv3.crt

 -extensions usr_cert

 36

 Verifying the Certificate

 To verify the certificate's details, run the following command:

 openssl x509 -text -noout -in self-cert.crt

 37

 4. Generating Hybrid Certificates

 Generating the Root Certificate (Certificate Authority)

 Step 1: Generate a private key for the Certificate Authority (CA) with 2048-bit key

 length :

 openssl genrsa -out CA-pvt.key 2048

 Step 2: Once the private key is generated, we need to extract the public key for

 further use :

 openssl rsa -in CA-pvt.key -pubout -out CA-pub.pem

 Step 3: Create the self-signed Root Certificate (CA Certificate):

 openssl req -new -x509 -key CA-pvt.key -days 3650 -out CA.crt

 38

 Generating the Server Certificate

 Step 1: Generate the private key for the server certificate:

 openssl genpkey -algorithm <dilithium5> -out private.key

 Step 2: Create a certificate signing request (CSR) for the server certificate:

 openssl req -new -newkey <dilithium5> -key private.key -out Certificate.csr

 -config /usr/lib/ssl/openssl.cnf -extensions v3_req

 39

 Signing the Server Certificate

 Step 1: Sign the server certificate using the root certificate and key:

 openssl x509 -req -in Certificate.csr -CA CA.crt -CAkey CA-pvt.key -CAcreateserial

 -out Userca.crt -days 365 -sha256 -extensions v3_req -extfile /usr/lib/ssl/openssl.cnf

 40

 REFERENCES

 ● [1] OpenSSL Foundation, Inc. (no date) OpenSSL,
 /docs/man3.0/man7/crypto.html. Available at:
 https://www.openssl.org/docs/man3.0/man7/crypto.html (Accessed: 17 July
 2023).

 ● [2] “Home,” Open Quantum Safe, https://openquantumsafe.org/ (accessed
 Jul. 27, 2023).

 ● [3] Open-Quantum-Safe, “GitHub - open-quantum-safe/oqs-provider:
 OpenSSL 3 provider containing post-quantum algorithms,” GitHub.
 https://github.com/open-quantum-safe/oqs-provider (Accessed: 19 July
 2023).

 ● [4] Open-Quantum-Safe, “GitHub - open-quantum-safe/liboqs: C library for
 prototyping and experimenting with quantum-resistant cryptography,”
 GitHub. https://github.com/open-quantum-safe/liboqs (Accessed: 19 July
 2023).

 ● [5] “Creating a Self-Signed Certificate with OpenSSL | Baeldung,” Baeldung ,
 Oct. 2022, [Online]. Available:
 https://www.baeldung.com/openssl-self-signed-cert (Accessed: 20 July
 2023).

 ● [6] C. M. Jun , “Creating public key from private key | Baeldung on Linux,”
 Baeldung on Linux , Aug. 2022, [Online]. Available:
 https://www.baeldung.com/linux/public-key-from-private-key#:~:text=Getti
 ng%20the%20Public%20Key%20using%20openssl (Accessed: 26 July 2023).

 41

https://www.openssl.org/docs/man3.0/man7/crypto.html
https://openquantumsafe.org/
https://github.com/open-quantum-safe/oqs-provider
https://github.com/open-quantum-safe/liboqs
https://www.baeldung.com/openssl-self-signed-cert
https://www.baeldung.com/linux/public-key-from-private-key#:~:text=Getting%20the%20Public%20Key%20using%20openssl
https://www.baeldung.com/linux/public-key-from-private-key#:~:text=Getting%20the%20Public%20Key%20using%20openssl

